EFFECTIVENESS OF DIFFERENT ENDODONTIC IRRIGANTS AGAINST ENTEROCOCCUS FAECALIS: AN EX VIVO STUDY.

Fabio Luis Miranda Pedro1, Lenieser Fajardo Nunes1, Thiago Machado Pereira1, Kellin Pivatto1, Cyntia Rodrigues de Araujo Estrela1, Octavio Amezcua2, Alvaro Henrique Borges1

1 Oral Sciences, University of Cuiaba, Brazil
2 Oral Sciences, University of Guadalajara, México

CORRESPONDING AUTHOR: fapedro@terra.com.br

ABSTRACT

Aim: To evaluate the effectiveness of different endodontic irrigants against Enterococcus faecalis (ATCC 29212).

Methods: Seventy bovine mandibular incisors were prepared, inoculated with a bacterial strain for 60 days and divided into the following groups: positive control; negative control; 2.5% NaOCl; 17% EDTA; 0.2% chitosan; 2.5% NaOCl + 0.2% chitosan; and 2.5% NaOCl + 17% EDTA. The irrigation protocol was performed using an experimental peristaltic pump device, with the irrigating solutions circulating within the apparatus at a constant flow for 10 min. Paper-point samples were then collected from the root canals and immersed in 7 mL of brain heart infusion broth, followed by incubation at 37°C for 48 h. Bacterial growth was assessed by turbidity of the culture medium.

Results: E. faecalis was present in all samples after the use of different irrigants.

Conclusion: The different irrigants tested were not effective in completely eliminating dentin bacterial contamination with E. faecalis.

http://dx.doi.org/10.19177/jrd.v6i201898-103

INTRODUCTION

The ultimate goal of endodontic treatment is to eliminate bacteria from infected root canals by mechanical instrumentation combined with the use of irrigating solutions. The root canal is an accessible environment for several microbial species, allowing attachment to the dentin surface and consequent formation of dense bacterial biofilms. Among the microorganisms present in the root canal microflora, Enterococcus faecalis is a major pathogen associated with treatment failure in cases of persistent endodontic infections. E. faecalis is a Gram-positive, facultative anaerobic microorganism with the ability to form biofilms, acquire several virulence factors, invade dentinal tubules, and grow in extreme conditions, such as at elevated pH. Therefore, its present degree of pathogenicity warrants further investigation.
Sodium hypochlorite (NaOCl) is a commonly used antimicrobial irrigant in endodontics, mainly because of its ability to dissolve organic matter, lubricate the instruments, and neutralize toxic agents. Despite its antimicrobial activity and ability to remove the smear layer when used in combination with chelating agents, NaOCl is associated with cytotoxic effects. Ethylenediaminetetraacetic acid (EDTA) was the first chelating agent to be used for the purpose of facilitating the instrumentation of atretic canals. Therefore, a novel, accessible, biocompatible and low-cost irrigating solution that promotes disinfection has been the subject of research in several studies. Chitosan is a natural polysaccharide obtained by deacetylation of chitin from crab and shrimp shells. It has a chelating capacity and properties such as biocompatibility, biodegradability, bioadhesion, and absence of cell toxicity. In endodontics, chitosan is considered an alternative to EDTA for root canal irrigation.

Because of the difficulty in controlling endodontic biofilm formation, investigation of biocompatible chemical substances, effective against resistant pathogens such as E. faecalis, is necessary. The objective of this ex vivo study was to evaluate the effectiveness of different endodontic irritants against E. faecalis.

METHODS

BIOLOGICAL INDICATOR

The Gram-positive facultative anaerobic coccus E. faecalis, obtained from the American Type Culture Collection (ATCC 29212), was used as the biological indicator. The bacterial strain was inoculated into 7 mL of brain heart infusion (BHI) broth (Difco Laboratories, MI, USA) and incubated at 37°C for 24 h. The experimental suspensions were prepared by culturing the strain on the surface of BHI agar (Difco Laboratories), following the same incubation conditions. The bacterial cells were suspended in saline to give a final concentration of about 3x10^8 cells/mL, adjusted to No. 1 McFarland turbidity standard.

SOLUTION PREPARATION

The following solutions were tested in this experiment: 2.5% NaOCl (Longevity, GO, Brazil); 17% EDTA (Longevity); and 0.2% chitosan (Longevity). For the preparation of chitosan, 0.2 g of chitosan were diluted in 100 mL of 1% acetic acid, and the mixture was stirred for 2 h using a magnetic stirrer until obtaining crystalline homogeneous solutions with 3.2 pH.

TOOTH PREPARATION

Seventy bovine mandibular incisors had their crowns removed with a diamond disc (American Burrs, SP, Brazil) at a 90° angle to the long axis of the tooth. Root lengths were standardized to 16 mm and the canals were emptied with a #15 K-Flex file (Dentsply Maillefer, Ballaigues, Switzerland) combined with conventional irrigation using 3 mL of 2.5% NaOCl (Longevity). Root canals were dried and filled with 17% EDTA (Biodinâmica, PR, Brazil) for 5 min to remove the smear layer. All specimens were individually placed in 1.5-mL polypropylene Eppendorf tubes (Cral, SP, Brazil) containing BHI broth and autoclaved for 30 min at 120°C.

EXPERIMENTAL DESIGN

Five milliliters of BHI broth were mixed with 5 mL of the bacterial inoculum. The specimens were inoculated with E. faecalis for 60 days using sterile syringes of sufficient volume to fill the root canal. This procedure was repeated every 72 h, always using 24-h pure cultures prepared and adjusted to No. 1 McFarland turbidity standard. The teeth were maintained in a humid environment at 37°C. Ten uncontaminated specimens were used as a negative control group, serving as an aseptic control. Ten contaminated specimens served as a positive control. Positive and negative control groups were kept without irrigation and used to confirm contamination. After the contamination period, all specimens were filled with sterile distilled water. Sterile paper points (Tanari, Tanariman Indústria Ltda., AM, Brazil) were introduced into the root canal and maintained for 1 min. Three paper-point samples were collected from each root canal and immersed in 7 mL of Letheen Broth (Difco Laboratories), a medium containing or added with neutralizers (lecithin, Tween 80, and sodium thiocyanate (Art Laboratories, SP, Brazil)), followed by incubation at 37°C for 48 h. The presence or absence of bacteria was determined by the turbidity of the culture medium. The specimens were randomly divided into 7 groups (n=10) as described in Table 1.
EVALUATION OF THE ANTIMICROBIAL EFFECT OF IRRIGATING SOLUTIONS

To evaluate the antimicrobial efficacy of the irrigating solutions, a sterile urethane hose was connected to a polypropylene Eppendorf tube attached to the teeth and to the entrance of a peristaltic pump (Sarlo 90, SP, Brazil). The entrance of this apparatus was the urethane hose connected to the tube and its exit corresponded to the apical portion of the root canals. The irrigants circulated within the apparatus at a constant flow of 50 mL/min for 10 min, as previously described by Estrela et al.10. After the 10-min period, each tooth was removed from the apparatus under aseptic conditions and irrigation was performed with 5 mL of sterile distilled water. Paper-point collection was performed as described earlier, followed by incubation at 37°C for 48 h. After evaluation of the culture medium, a 0.1-mL inoculum was transferred to 7 mL of BHI broth and subsequently incubated at 37°C for 48 h. After 48 h, bacterial growth was examined by visual analysis of the turbidity of the culture medium.

RESULTS

The antibacterial efficacy of the chemicals studied is described in Table 2. None of the endodontic irrigating solutions and experimental substances tested effectively eliminated dentin bacterial contamination with E. faecalis. The limitations of the methodology used in this study should be considered when interpreting the results, since statistical analyses were not possible. Although some authors have reported limited efficacy of NaOCl combined with both EDTA and chitosan16-19, there is still no report of a fully effective action of any of these solutions against E. faecalis in endodontics.

DISCUSSION

Infection control during endodontic treatment remains a challenge, and new auxiliary chemical substances to help in the disinfection process have been investigated16-19. In the present study, the evaluation of the turbidity of the culture medium and the qualitative evaluation of root dentin surface contamination using SEM showed that the different endodontic irrigants and substances tested were not effective in completely eliminating dentin bacterial contamination with E. faecalis. The choice of bovine dentin for infection and disinfection tests has been well accepted14,20. Bovine dentin appears to be a suitable substitute for human dentin, and factors such as ease of obtaining and handling and the use of bovine dentin in similar tests involving the removal of smear layer further support its indication20. In addition, its topography is an important factor in the survival of biofilms, since irregular surfaces increase bacterial adhesion and retention14. Our methodology included the use of a peristaltic pump device connected to the entrance of the root canals in order to simulate the root canal irrigation process10. Subsequently, the evaluation of the turbidity of the culture medium of microorganisms collected from the root canals allowed us to determine the microorganism growth rate. Studies investigating the antimicrobial efficacy of irrigating
solutions have used different methods, such as the agar well diffusion method1,25, fluorescence assays17, and SEM analysis21. However, methodological differences may lead to results that cannot be extrapolated to the clinical setting or at least should be done with caution.

Active chlorine generated by the dissociation of NaOCl in aqueous medium is a powerful oxidizing agent that exerts an antimicrobial effect by irreversible oxidation of bacterial cells4,5. Although lower concentration solutions have demonstrated antimicrobial efficacy, higher concentrations of NaOCl have a faster and greater bactericidal effect, but with increased cytotoxic effects11,14. The intensification of the antimicrobial effect of NaOCl when used in combination with EDTA may be related to the demineralizing action of EDTA, which prevents smear layer formation during instrumentation, resulting in increased penetration of NaOCl in the dentinal tubules12. However, this combination may cause erosion of the dentin, compromising its structural integrity23.

Considering the lack of consensus on the efficacy, protocol of use and cytotoxicity of auxiliary chemical substances, new irrigants with improved antimicrobial and biological activity have been proposed. In this respect, the chelating capacity of chitosan in the dentin24 has prompted the study of its antimicrobial efficacy25,26. Chitosan is biocompatible, biodegradable, bioadhesive, and non-toxic to human cells24. Del Carpo-Perochono et al.14 attribute the antibacterial efficacy of chitosan to its polycationic nature, which reacts with the negatively charged membrane of bacteria, altering cell permeability24. Therefore, this substance may be a viable alternative to the irrigating solutions currently used in endodontics, given its effective action against microorganisms and less cytotoxic effects.

E. faecalis was chosen as a biological marker because of its possible microbial role in previously root-filled teeth with persistent periapical lesions29. Owing to characteristics such as being found more frequently in asymptomatic secondary endodontic infections and being able to invade dentinal tubules and compete with other microorganisms, this Gram-positive, facultative anaerobic microorganism has gained an important role in endodontic research1-3. The resistance of E. faecalis biofilms can be attributed to a series of microbiological factors inherent in the complex root system anatomy and dentin structure14. This microorganism has attracted much attention due to its ability to survive with limited nutrients, to maintain its pH level (due to the ability to block the cytoplasm), and to bond to the dentinal tubules18.

Ex vivo studies are important for the determination of clinical behavior parameters. Although the results cannot be extrapolated to the clinical setting, the inability of all the irrigants tested to sterilize contaminated dentin, demonstrated in the present study, raises concerns about the implications of current root canal disinfection protocols. Therefore, inconsistent results with regard to the effectiveness of several irrigants against E. faecalis35-37,24 reinforce the need to consider whether or not performing para-endodontic surgery in cases of endodontic failure. Although the evolution of endodontic systems has reduced the preparation time19, resulting in less contact of the irrigant with dentin walls, there is still a need for further research on the effectiveness of irrigants in this scenario.

CONCLUSION

Based on the methodology and irrigation protocol used in this study, it can be concluded that the different irrigants and substances tested were not effective in eliminating dentin bacterial contamination with E. faecalis.

REFERENCES

25. Bürklein S, Schäfer E. Apically extruded debris with reciprocating single-file and full-sequence rotary